
Visual observations show that unstable film motion is manifested in the form of rolls 
of clarified liquid, the height of which exceeds the film thickness by a factor of 2-3, 
following one another. Further, part of the suspension is drawn into the zone behind a roll, 
the stability of the sedimentation is destroyed, which is what leads to the noticeable 
decrease in the sedimentation rate of suspensions at angles of inclination of the plates 
exceeding 50 ~ and Ps = 1010-1015 kg/m 3. 

NOTATION 

8, thickness of the film, m~ ~, dynamic coefficient of viscosity, N-sec/m2; Ps and po, 
densities of the suspension and clarified liquid, kg/m3; Vav, average velocity of motion of 
the film, m/sec; Vc and Vg, velocities of propagation of continuous and gravitational waves, 
m/sec; ~ and b, length and width of the flat tubes, m; h, distance along the normal between 
the plates, m; ~, angle of inclination of the tubes to the horizontal, deg; A, a dimension- 
less grouping of constant. 
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POSSIBLE MECHANISM FOR THE RETARDATION 

EFFECT IN THE FLOW OF POLYMERIC LIQUIDS 

A. N. Prokunin, B. A. Krasovitskii, 
and V. D. Sevruk 

UDC 532.5:532.135 

The effect is examined theoretically taking into account the influence of both 
orientational as well as the thermal activation mechanism for viscous flow on 
the relaxation time and, possibly, irreversible accumulation of ruptures. 

It was shown in [i] that in order to stretch melted polyethylene with a constant rate 
of deformation, aretardation is observed after the flow develops. In the region of retarda- 
tion, the polymer deforms similarly to an elastic nonlinear body. Then, a flow develops 
again in the polymer. These facts were established by direct measurement of the reversible 
and irreversible parts of the deformation. In this case, the tensile forces can have two 
maxima as a function of time. The secondary increase in the force corresponds to the retar- 
dation in the flow, while the secondary drop corresponds to renewed development of the flow. 
A stationary flow was not achieved in the region of deformations investigated, while the 
testing time could easily exceed the relaxation time, which is determined by performing a 
shear experiment in the linear deformation range. We note that the stretching process, pos- 
sibly, is accompanied by irreversible accumulation of ruptures of macromolecules. 

Rheological equations [2], taking into account large elastic deformations and the orien- 
tation factor, are used in order to describe partially the effect of a retardation in the 
flow. The latter is determined by choosing a sharply increasing relaxation time as a 
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Fig. i. Different forms 
of the function ~(x): i) 
~(x) for @(x) ~i; 2) 
@(x) =e "Bw/2 and B =I; 3) 
when @(x) is given by (3) 
for B =I and v=0.57. 

function of the elastic energy accumulated during deformation. The equations [2] applied 
to stretching [3] describe the retardation of the flow and the renewed growth in force. 
The renewed development of flow and ~he corresponding drop in force are not described by 
these equations. For a complete, but fairly rough, determination of the effect [i], in 
the present work, we kept in mind the influence on the characteristic relaxation time 0* 
together with the orientation of the thermally activated viscous flow and, possibly, the 
irreversible accumulation of ruptures according to the Prandtl-Eyring mechanism (see [4]). 
In doing so, we do not consider the nature of the jumps and elements that lead to the indi- 
cated mechanism. A more detailed investigation of the latter requires special experiments 
on a microscopic scale. 

We note that the mechanism for the retardation in the flow could be explained by the 
influence on the orientation of the heating due to the internal friction. An estimate of 
the influence of dissipation showed that over the testing time the temperature varies by 
not more than 0.1~ and this cannot be a reason for the reappearance of the flow. 

In the case of the thermal activation mechanism for viscous flow, the equations that 
determine simple stretching for two parallel relaxation oscillators have the form 

1__ d__x.x + ( x +  1) ( ~ "  1) ~(x) = F; k 1 dy + ( y +  1) ( ~ - -  1) = kr;  (1) 
x dz 6x z y d~ 6f i  

f = ~ O i ;  k=OJ0t ;  ~ = t / 0 6  

Oi o =  (ax@au); a x =  2 ~ i ( x Z . x , l ) ;  a y =  2~(y~--y-i) ;  (2) 

( )  (x) O* (x) - ~--'~ sh 2 ~ "  ~x = - - e  
O~ ~x 

R T  

w = x  2 + 2 x - 6 + 2 ~  x+x-2 ;  O*(1)=Ol.  (3) 

Here 0*(x) is the characteristic relaxation time. Six independent material constants enter 
into (1)-(3): el, e2, ~i, ~2, B, and y. For derivation of Eqs. (1)-(3) for y=O and ~2+~, 

see [3]. 
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Fig. 2. The force f as a function of time T: a) F = 
0.45; b) 1.3; c) ii. 
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Fig. 3 Fig. 4 

Fig. 3. The total deformation ine (i) and the residual lfie/~ 
a function of time T for stretching with F = 0.45~ 

Fig. 4. The ratio ~/F as a function of time T. The curves 
1-9 correspond, respectively, to F=0.05, 0.i, 0.2, 0.3, 0.35, 
0.4, 0.5, 1.3, and Ii. 

The use of two parallel relaxation oscillators (Jx and ~y) follows from a comparison 
of theory and experiment, carried out in [3, 5]. Such a representation permits describing 
quantitatively the effects related to the large elastic shearing and tensile strain for 
deformation rates varying by more than three orders of magnitude. In this case, it is 
assumed that the relaxation mechanisms do not interact with one another (@i >> @2 and DI <<~2)~ 
The derivation of Eqs. (1)-(3) is based on the classical potential of the network theory 
of Mackian elasticity. The effect of orientation and the thermal activation mechanism of 
viscous flow in the second relaxation oscillator is not taken into account. We emphasize 
once again that the orientation is taken into account by the first cofactor ~(x), and the 
thermal activation mechanism by the second. 

The solution of Eqs. (1)-(3) is examined for the case of stretching with a constant 
rate of deformation (F = eonst) with the following initial conditions: 

xl~=o ~ YI~=o = 1. (4 )  

In problem (1)-(4), qualitatively different behavior of the solutions depends on the 
form of the function (see (i)) 

~(x)= (x+ 1)(~--1) ~(x). 
6~ 

Figure 1 shows three qualitatively different versions of the function ~ (x). Curve 1 
denotes the function ~1(x), when #(x) ~ i, i.e., the influence of only large elastic stres- 
ses on stretching are taken into account. Curve 2 (~2(x)) determines the orientational 
effect. The influence of the thermal activation mechanism of viscous flow in this case is 
not taken into account, i.e. ~(x) =e -Bw/2. When all three factors are considered (see 
~(x) in (3)), three qualitatively different curves for ~(x) can exist. For 2v/~ >> I (9= 
2~y/RT), the function ~(x) is qualitatively similar to ~(x), while for 2v/8 < 1 it is 
similar to ~2(x). The case examined in the present work is realized for 2~/B>~I. Then, 
the curve ~3(x) has the form of curve 3. 

The stationary solution of the problem being examined exists for ~(x) with arbitrary 
stretching rates F. For ~(x) astationary solution exists only for F max ~(x). For larger F 
the solution is a monotonically increasing function, which is close to the elastic asymptote. 
The case of ~3(x) is an intermediate situation. Here, a stationary solution exists for 
arbitrary F. Near min ~3(x) (stationary flow is not achieved), for F >maxq 3(x) F~(i/x) 
(dx/d~), i.e., in this vicinity the solution is close to the elastic case. 
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Equations (1)-(3) with condition (4) was solved numerically on a computer using the 
Runge--Kutta method. In order to make comparisons with experiment, the ratio o(T)/F and 
the force per unit area of the initial section were Computed: 

f = ~e-r~. (5) 

We n o t e  a l s o  t h a t  f o r  IF] < 1  ( y ~ l )  and T > k  t h e  s e c o n d  e q u a t i o n  i n  (1)  c a n  be  r e p r e -  
s e n t e d  as 

__ g-i = 3kF. (6) 

The system of equations describing stretching taking into account (6) has the form 

1 d x ~ ! ( x + l ) ( ~ - - l )  ~(x)=F; 
x d~ 6 ~  

= (1 - - s )  ( ~ . x - i ) - - }  - 3 s f ;  s = n2/n; (1 - - s )  = n~/n. (7) 

In order tO make the following comparison with experiment, we will also determine the 
magnitude of the resilience (deformation) u = I/Ir. 

For the simplified Eq. (7), the elastic deformations u and x are connected by the 
expression 

x 

, . s ( 1  + ~ )  ~ ( ~ )  . 
~ = e x p  = ' g ' =  . 2 ( 1 - -  s) 

1 

Here x is the elastic strain that accumulates with stretching up to the time T. The scheme 
for solving the problem of determining u is the same as in [3], where the function u(x) is 
obtained for ~(~) ~ i. 

The calculations were carried out for T = 398~ and for the constants of the liquid 
having the following values: ~i =1.8"105 Pa.sec, ~2 =105 Pa.sec, 81 =1.1"102 sec, 82=6 
sec, B~I, and y = 106 cm3/mole. The first four constants are obtained from experiments 
performed in the linear range of behavior of the liquid in the presence of shear with a 
constant rate of deformation (according to the value of the largest Newtonian viscosity 
and the stress as a function of time). We obtain the constants ~ and y in the region of 
nonlinear deformation from the correspondence between theoretical and experimental functions 
f(T), obtained with stretching for F=0.45-11. 

We note that the number of monomeric links (computed from the known value of y), par- 
ticipating in the jumping act, is z~60. This value is somewhat greater than for flows 
without the influence or orientation [7]. 

In Figs. 2-4 the solid lines are the computed curves. 

The tensile stresses f (see (5)) as a function of time T are shown in Fig. 2. Curve 
1 in Fig. 2a shows the solution to Eqs. (1)-(3); curve 2 shows the solution to the approxi- 
mate equations (7). For T >0.i, these solutions are no longer distinguishable. For the 
values of F presented in Fig. 2, the function f(T) have a double-hump form. When F 
decreases, the second maximum, corresponding to large T in the functions f(T), degenerates 
(not shown in Fig. 2). 

Figure 3 shows the total deformation in E and the residual deformation ine/u (see [6]) 
as a function of T for F=0.45. For stretching with F =const, the total deformation is 
in s= FT, which follows from the kinematics of uniform stretching (see [6]). The depen- 
dence of in s/u as a function of T after the initial increase flattens out (the flow lags) 
and subsequently increases further. We note that the time at which the plateau appears 
in the function in s/u, corresponds to the beginning of renewed growth in force (see Fig. 
2a). In the region where the forcedecreses again (Fig. 2a), the flow reappears (see Fig. 3). 

The dependence of the ratio o/F as a function of T is shown in Fig. 4. Stationary 
flow is achieved, as already noted above, for deformation with arbitrary F. The quantity 
o/F for stationary flow is the ratio of the effective viscosity on stretching tO the maxi- 
mum viscosity n =N~+~2. 
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For small F, stationary flow is attained after a time T*~01, and o/F =3. With 
increasing F, the ratio o/F for the stationary flow at first increased and reached 200. 
At the Same time, the time T* also increases considerably. With further increase in F, 
both the ratio o/F for the stationary flow as well as the time it takes to achieve the 
stationary flow T* begin to decrease. 

We note that taking into account the influence of only large elastic stresses (r 
i) in the range of F being examined leads to a single maximum in the function f(T), mono- 
tonic decrease in ~*, and a weak increase in ~/F (with increasing F) in the presence of a 
stationary flow. 

The dashed lines represent the experimental dependences taken from [i]~ It is evident 
from Figs. 2-4 that there is a semiquantitative correspondence between theory and experiment. 
The experimental dependences o/F as a function of T (Fig. 4) do not attain stationary flow. 
This is apparently related to the limitations of the apparatus in obtaining large deforma- 
tions. 

In conclusion, we note that the discovery of the theoretical existence of stationary 
flow and the passage of effective viscosity as a function of the deformation rate through 
a maximum require additional experimental verification using the apparatus of the type in 
[8] with which large deformations can be attained. 

NOTATION 

x and y, elastic deformations in each of the relaxation oscillators; Ox and Oy, stres- 
ses in each relaxation oscillator; ~, dimensionless tensile stress; 2~i =D1/el and 2~2 = 
~2/02, elastic moduli; ~i, ~2, 01, and 02, viscosity and relaxation times; ~ =~z+~2, lar- 
gest newtonian viscosity; ~ and F, dimensional and dimensionless deformation rates; t and 
T, dimensional and dimensionless times; R, universal gas constant; T, temperature, in ~ 
B, dimensionless parameter that characterizes the flexibility of a molecular chain (0 ~ B 
i); y, a parameter that characterizes the magnitude of the decrease in the potential bar- 
riers under the action of mechanical stresses; ~= 2~Iy/RT; s, ratio of the retardation time 
to the relaxation time (0~s~l); 0", some characteristic relaxation time; s, total longi- 
tudinal deformation; ~, elastic deformation (elastic jump); l, instantaneous length of the 
stretched specimen; Ir, length that the stretched specimen of length I approaches after the 
stress is removed from it for T +~; z, number of monomeric links participating in the jump- 
ing act; T*, time required to attain a stationary flow; f, dimensionless ratio of the ten- 
sile force and the initial cross-sectional area. 
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